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A CONVECTION-DRIVEN DYNAMO
I. THE WEAK FIELD CASE

By A.M. SOWARD
School of Mathematics, University of Newcastle upon Tyne
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A hydromagnetic dynamo model is considered. A Boussinesq, electrically conducting fluid is confined
between two horizontal planes and is heated from below. The system rotates rapidly about the vertical axis
with constant angular velocity. It issupposed that instability first sets in as stationary convection character-
ized by a small horizontal length scale. In preliminary calculations the Lorentz force is neglected so that
the magnetic induction equation and the equation of motion are decoupled. The possibility that motions
occurring at the onset of instability may sustain magnetic fields is thus reduced to a kinematic dynamo
problem. Moreover, the existence of two length scales introduces simplifications which enable the
problem to be studied by well-known techniques. The effect of the Lorentz force on the finite amplitude
dynamics of the system is investigated also. Since only weak magnetic fields are considered the kinetic
energy of the motion is fixed by other considerations and it is only the fine structure of the flow that is
influenced by the magnetic field. A set of nonlinear equations, which govern the evolution of the hydro-
magnetic dynamo, are derived from an asymptotic analysis. The equations are investigated in detail
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< both analytically and numerically. In spite of serious doubts concerning the existence of sufficiently
S o complex stable motions, stable periodic dynamos are shown to exist. An interesting analytic solution of
o = these equations, which may be pertinent to other problems arising from finite-amplitude Bénard con-
= 48] vection, is presented in the final section.
et ,
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1. INTRODUCTION

Progress towards the understanding of kinematic dynamos has advanced rapidly in recent years
(see, for example, Roberts 1971). Indeed a wide variety of prescribed fluid flows are now known to
maintain magnetic fields by dynamo action. It is natural, therefore, to continue by investi-
gating the hydromagnetic dynamo problem in which the magnetic induction equation and the
equation of motion are attacked simultaneously. In other words, the velocity distribution is no
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612 A. M. SOWARD

longer prescribed, as in the kinematic models, but is determined from the equation of motion
which itselfis influenced by the induced magnetic field via the Lorentz force. Thus the two equa-
tions are completely coupled.

Busse (1973) has initiatedf an approach to the hydromagnetic dynamo problem which is
based on perturbations to the solutions of the linear equations governing non-magnetic Bénard
convection. He has shown that steady rolls occurring at the onset of instability, when combined
with a shear flow along the axis of the rolls, are capable of sustaining a magnetic field provided
motion is sufficiently vigorous. This result suffers from the shortcomings of any kinematic analysis,
namely it is possible to obtain solutions for the magnetic field which grow indefinitely. But, if
itis anticipated that in the full hydromagnetic dynamo the magnetic field is steady, the amplitude
of the motion characterized here by the magnetic Reynolds number is fixed by the kinematic
dynamo problem! Busse supposes that in the absence of Lorentz forces, an equilibrium amplitude
for the rolls is determined by equating the small non-linear convective terms with buoyancy
forces which result from a small deviation of the Rayleigh number above its critical value. When
the Lorentz force is included the result is modified. However, since the magnitude of the velocity
is already known from consideration of the magnetic induction equation, the equilibrium
condition fixes the magnitude of the Lorentz force. In this way the hydromagnetic dynamo is
solved: both the amplitude of the motion and the magnetic field are determined.

The hydromagnetic model considered here has similarities with that of Busse (1973): a
critical comparison is given in appendix A. A layer of electrically conducting Boussinesq fluid is
confined between horizontal, stress free, perfectly conducting planes distance L apart. The
system rotates with constant angular velocity 2 about the vertical axis and the Taylor number

T = 4Q2[4)2, (1.1)

where v, the kinematic viscosity, is assumed to be large. A temperature difference, AT, is main-
tained between the planes which are kept at constant temperatures. It is assumed that the

Rayleigh number
R = ygL3AT|/vk, (1.2)

where ¥ is the coeflicient of thermal expansion, « is the thermal diffusivity, g is the acceleration
due to gravity is close to the critical value Ry(k) which corresponds to steady motion with hori-
zontal wave vector k. To ensure that instability first sets in as stationary convection it is supposed

that the Prandtl number
= y[k (1.3)

is greater than unity. Chandrasekhar (1961) has shown that this condition is sufficient to exclude
overstability. When the fluid is in motion a magnetic field b* permeates the fluid. It is supposed
that there are no external electric currents so that magnetic field is maintained against ohmic
decay solely by the induction process. Under certain conditions to be specified later, the mag-
netic field and flow remain sufficiently small for the linear stability analysis of the non-magnetic
problem to remain valid for all time. Since the solution of the linear problem is not unique, higher
order approximations must be considered which take the nonlinear terms into account. The
Lorentz force becomes important at this stage and, since it plays such a vital role in determining
the motion of the fluid, the dynamo is truly hydromagnetic.

1 There is, of course, previous work on the hydromagnetic dynamo some of which is discussed by Busse (1973)
His work is, however, particularly pertinent to the analysis of this paper.
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It is well known that, when the Taylor number is large, the most unstable modes for the
non-magnetic problem have horizontal wavenumbers of order 7#L-1. Consequently the hori-
zontal length scale of the motion at the onset of instability is of order 7—#L, while the correspond-
ing Rayleigh number is order 7'%. The resulting kinematict dynamo is thus characterized by two
length scales L and T-%L and is consequently amenable to well-known multiple length scale
procedures which are an extension of those described by Childress (1967, 1970). The magnetic
field may be divided into two parts. First, there is the mean horizontal magnetic field which is
dependent only on the vertical coordinate. Secondly, there is a smaller contribution which
fluctuates on the horizontal length scale 7-#L. The essence of the dynamo mechanism is that the
two contributions are mutually supporting: convection of the mean magnetic field induces the
smaller fluctuating magnetic field, while convection of the fluctuating field helps to support the
mean field.

The mathematical procedure used, in the limit 7" oo, is straightforward. Once it is estab-
lished that the motion occurring at the onset of convection can sustain a magnetic field it only
remains to determine the evolution of the velocity distribution and magnetic field by taking
account of the Lorentz force and other small nonlinear effects. The analysis is simplified by the
assumptions

o=0(1) and o,=7/k=0(1), (1.4)
where 7 is the magnetic diffusivity. Thus the order of magnitude of all three diffusion time
scales L2[n, L[k, L?[v is the same and all expansions can be based on the single parameter

e=T-%t (<1). (1.5)
Itis found that, when
0 < R—Ry(ke) = O(T?), (1.6)
where the horizontal wavenumber, %, is chosen to minimize Ry(£), finite amplitude motion is
maintained which can support a magnetic field by the dynamo process described above. If the
fluid velocity u* and the magnetic field b* are made dimensionless by the substitutions

w* = (p/L)e-bu, b* = Bb, (1.7)

the finite amplitude motions are characterized by ¢ and b of order 1. The strength of the mag-
netic field can be measured by the Hartmann number

M = [BL2ppry}}, (1.8)

and is determined by solving the hydromagnetic dynamo problem. Since the magnitude of
the field depends on the vigour of the motion, which in turn depends on the strength of the
buoyancy forces, the value of A ultimately depends on the choice of Rayleigh number. It
transpires that for the parameter range (1.6) solutions of the hydromagnetic dynamo can be
found having weak magnetic fields for which A/ is order 1. This régime was described by Childress
& Soward (1972) as the weak-field limit. Investigation into other régimes is concurrently in
progress by Childress.

For the parameter range discussed in the previous paragraph advection of the magnetic field
proceeds at the same rate as its diffusion. Consequently the mean magnetic field evolves on the
diffusion time scale. The time dependence of the flow is more complicated. In order to isolate the

+ Whenever the velocity is assumed to be uninfluenced by the magnetic field the dynamo is referred to as
kinematic.

56-2
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614 A. M. SOWARD

dynamo mechanism, solutions are considered for which the flow evolves on the diffusion time
scale. Of particular interest is the response of the flow to changes in magnitude of the Lorentz
force. However, it is possible that the flow could vary on much faster time scales. Indeed a
natural time scale arises whenever the time derivatives in the equation of motion are assumed to be
comparable in magnitude with the remaining terms. For the hydromagnetic dynamo solutions
considered here, the time derivatives are negligible in the low-order approximations and hence
the solutions may be regarded as quasi-steady. The validity of solutions based on a single time
scale is a delicate matter discussed in detail in §2.

The governing equations and boundary conditions defining the hydromagnetic dynamo
are described in § 2. Series solutions of the equations are developed with the use of ¢? as an expan-
sion parameter. The zeroth order solutions of the non-magnetic problem are derived in §3.
Though the results of the stability problem are well known (see Chandrasekhar 1961), a new
derivation is given since it provides the basis for the subsequent determination of the higher order
terms in the expansion of the solution. The lack of vertical boundaries implies that only the
magnitude of the horizontal wave vector is determined from the zero-order analysis; its
direction is arbitrary. Thus a continuum of modes with |k| = constant is possible while the de-
pendence of each mode on the slow diffusion time is unknown. Consequently the motion is
undetermined at this stage and it is necessary to consider higher order terms in the expansion in
order to specify uniquely the flow, as defined by the zeroth-order solution. The subsequent
analysis, can, however, be simplified by restricting attention to particular modes as the procedure
is consistent with the governing equations. This, of course, does not provide a complete treatment
of the stability problem and no such claim is made.

The kinematic dynamo is investigated for arbitrary steady flows compatible with the zeroth-
order solutions. The analysis is based on equation (3.21) which governs the development of the
mean magnetic ficld. The term involving M;; B; provides a source of magnetic field which hope-
fully overcomes the ohmic dissipation —02B;/0z%: In the language of mean field electrodynamics
it is more commonly called the o-effect (Steenbeck & Krause 1969). Provided the motion is
sufficiently vigorous, dynamo action is generally possible. One notable exception is the case of a
single roll characterized by a single value of k: for this mode dynamo action is always impossible.
Now it transpires that the average kinetic energy per unit volume

T* = (pyfel)) T, (1.9)

is a constant to lowest order. In fact, the dimensionless quantity 7 is fixed by the difference be-
tween the Rayleigh number R and its critical value R,(k) so that, when R = Ry(k), there is no
motion (7 = 0), while, as R — R,(k) increases,J” increases monotonically also. Consequently the
Rayleigh number not only provides an important constraint on the type of motion possible, but
also provides an unambiguous measure of the magnetic Reynolds number. Moreover, it is found
that a critical value of 7 [R,(k) (= A) exists for which all solutions of the magnetic induction
equation decay when 4 < A, while a magnetic field which oscillates with time is maintained
when A = Ay Thus, when the response of the fluid motion to the time-dependent Lorentz
force is taken into account, motions varying on the slow time scale must be expected. This
observation highlights the deficiency of any study of the kinematic dynamo based on steady
motions. Since the general problem involving unsteady flow is formidable, a particularly simple
model is investigated which isolates important new effects. Further it provides the prototype of
a general class of motions which arise when the hydromagnetic dynamo is considered later. The
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most important conclusion to be drawn from the model is that unsteady flow can provide more
efficient dynamo action than steady flow. In other words, kinematic dynamos are possible with
A < A4 Whether this is true for hydromagnetic dynamos cannot, of course, be decided on
the basis of the kinematic analysis. However, for each class of motion used to investigate hydro-
magnetic dynamos, solutions are found for which A4 < A4, as suggested by the kinematic
analysis.

The higher order terms in the expansion of the velocity and temperature distributions are
determined in §§4 and 5 for the sole purpose of removing the indeterminacy in the zeroth-order
solution. Now, since the motion is the superposition of various rolls, its structure is defined
uniquely by specification of #(¥(t, k), which defines the vertical velocity

Re [#O(¢, k) sin nz e1#-¥]

for each roll; Lz is the vertical distance from the bottom plane, L2/7 is the time. The culmination
of the asymptotic analysis is the determination of (5.12); a set of equations which governs the
evolution of each roll separately. The main effects isolated by this equation are the nonlinear
interactions and the Lorentz forces represented by

SA(R, B)| @0, k)[*00 (1 k) and  —im(, k) 000, k)

respectively. Here m(¢, k) is a weighted vertical average of (k.B)2 The additional unknown
6(t), which measures a second-order correction to the horizontal average of the temperature,
is eliminated by the condition that the kinetic energy is constant. The constraint on the kinetic
energy is a manifestation of the result that the lowest order horizontal average of the temperature,
as measured by @©sin 2rz, is independent of time and is fixed by the value of the Rayleigh num-
ber. It follows that a more useful form of (5.12) is (7.1), in which ©®(¢) has been eliminated and
q(t, k) = |0O(t, k) |2 Some additional effects are accounted for by the term involving (k). The
term is less important than the others. Indeed when | k| is the same for all modes, as in the case
when only the most unstable modes on linear theory are investigated, the term is identically
zero. The evolution of the hydromagnetic dynamo is, therefore, determined by (7.1) and the
dynamo equation (3.21) governing the mean horizontal magnetic field.

Investigations into finite amplitude Bénard convection usually indicate, as for example the
case of the non-rotating system considered by Schluter, Lortz & Busse (1965), that certain con-
vective rolls are the only stable motion. In other words, ultimately as ¢ — oo, the velocity dis-
tribution is likely to approach that corresponding to a single roll. Until calculations are actually
performed it is not known whether corresponding results hold for the rotating layer in the presence
of a non-uniform magnetic field but if they do the dynamo must ultimately fail as the motion is
not sufficiently asymmetric. The analysis of the hydromagnetic dynamo equation (3.21) and
(7.1) is a matter of some complexity and a detailed examination of the properties of the equations
is made in §§7 and 8. The preliminary investigation of dynamo models based on motions which
are represented by the superposition of two rolls intersecting at right angles and three rolls
intersecting each other at an angle of 1w is undertaken in §7. When there is no magnetic field
and only the most readily excited modes for which £ = k. are considered, all terms except the
first two in (7.1) are non-zero. Hence the amplitudes of the modes ®©(¢, k) evolve as a direct
consequence of the non-linear interactions. For the case of the two rolls the flow is steady while
for three rolls non-linear periodic oscillations ensue defined by (7.25) to (7.29). The result,
which is apparently new, emphasizes the danger of general conclusions concerning the ultimate
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616 A. M. SOWARD

state of Bénard convection based on the linear stability analysis of steady finite amplitude motion.
For with the exception of a few special cases, it may be anticipated that finite amplitude flows
are generally unsteady. Such periodic motions, some of which are possibly stable to yet further
perturbations, are necessarily overlooked when steady motion is investigated. Analytic solutions
of the hydromagnetic dynamo are not obtained for either the case of two or three rolls. Instead,
numerical integration of initial value problems indicate the existence of stable}, nonlinear,
periodic dynamos. These periodic solutions are approached as ¢ - co and provide the limit cycles
for the initial value problems investigated. The case of two rolls represented by modes of slightly
different wavenumber is easily seen to be unstable in the absence of magnetic field (see (7.5) and
(7.7)). However, the numerical integrations show that the dynamo is stabilized by the presence
of the magnetic field! The numerical calculations for three rollsleads on naturally to the analytic
solution presented in §8. Here, instead of restricting attention to motion expressed by the super-
position of a set of discrete rolls, a continuous distribution is envisaged. Paradoxically, it is this
added complexity which permits analytic treatment of a class of periodic solutions. Since hydro-
magnetic dynamos are obtained for the continuous case which correspond to Rayleigh numbers
smaller than any found for the case of two or three rolls, it is reasonable to suppose that these
periodic dynamos are the limit cycles resulting from a wide class of initial conditions. Indeed it
seems likely that of the cases considered, the continuous distribution is the most pertinent.
It may also be noted that the same technique can be applied to the classic (non-magnetic)
situations and provide simple analytic solutions, describing periodic motion, which have appar-
ently been overlooked until now.

It should be noted that the results of the paper, with the exceptions of §§ 75, c and 8 have already
been reported by Childress & Soward (1972) in a preliminary and highly condensed form. One
objective of the present paper is to give a detailed account of the asymptotic analysis which leads
to equations (3.21) and (7.1) governing the hydromagnetic dynamo in the so-called weak-field
limit. The second objective is to describe analytic and numerical calculations which indicate the
existence of stable oscillatory solutions of these nonlinear equations.

2. THE GOVERNING EQUATIONS

Rectangular cartesian coordinates x*, y*, z* are adopted where the z*-direction is vertical
and the x*- and y*-directions lie in the horizontal plane. Since the planes are distance L apart
and the horizontal length scales of interest are order €L, the position vector &* is made non-

dimensional by the substitution
v* = (eLx,ely, Lz). (2.1)

Moreover, since the dynamo process is concerned with events occurring on the magnetic dif-
fusion time scale, L2[y is adopted as the unit of time. Another quantity, as yet undefined, is the

temperature
T% = T + AT{~z+¢b}. (2.2)

Here T§ is the temperature on the bottom plane z = 0 and the dimensionless variable  measures
the perturbation of the temperature from its undisturbed linear profile.
1 Since the stability of the solution to arbitrary perturbations is not considered, ‘stable’ is used in a limited

sense. It refers to the possibility that the dynamo can be maintained by a certain class of motions without it
ultimately failing, as ¢ - oo.
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It is convenient to separate the variables ¢, b, and 6 into two parts. The first part is the hori-
zontal average which depends only on z and time ¢ The second part is the remainder, labelled
with a prime, which has zero horizontal average denoted by {...». Thus one defines

u = u'(&n,z,1) +€3Un(z, 1), (2.3a)
b = Bu(z,t) +€tb'(an, z,1), (2.3b)
0 = O(z,t) + €40’ (an, 2, 1), (2.3¢)

where quantities are scaled so that they are order 1 and the suffix h denotes the horizontal com-
ponents of the vector.

The above substitutions are made in the governing equations and, for brevity, the prime is
suppressed. Hence the horizontal and vertical components of the equation of motion are

2{63?}—‘2-}— et uh-Vuh-}-e‘%wauh} +1, x (un+€3Uh)
v| o¢ 0z
)2
= —Vnp+ M23(By-V) by -+ (eV§+e3§;) Un, (2.4a)
12, fp 20
and { 5 e un -Vaw+e€ W
2
= "E)E (P+p) + 07 et RO + cRO} + M263(By-V) b, + (eV2+e3-aa—z2) w, (2.4))
respectively, where R = T%R. 2.5
y

The vertical velocity is w and only terms up to order €® have been retained. The operator Vy
denotes the horizontal gradient and P(z, ) + p( #n, z, t) is the dimensionless form of the modified
pressure. Similarly, the heat conduction equation is separated into its mean part

00 0 020
{’)t +5- < >} 0z (2.6a)
and its fluctuating part
00 00 00 0 0
o, {62 5 T wtewg+ et [Uh V@+ew6——e (w@)]} [V2 +e2a 2] 0. (2.60)
The mean part of the magnetic field Bh(z, 1) satisfies the equation
oB B
B ixcux b+ oo, (2.70)
and to lowest order the fluctuating magnetic field b is determined from the equation
0= (Bn-V)u+VEb. (2.7b)
The remaining equations governing ¢ and b are
¢(0wfoz) = ~V-un and €(0,/0z) = —V-by. (2.8)

When u is given, equations (2.7) are similar to the well-studied multiple length-scale dynamo
equations considered by Childress (1967). They differ only in as much as there is no small length
scale in the z direction. The added complication implies that, even when the velocity is steady,
equation (2.7a4) cannot be reduced to an equation with constant coefficients. Instead, a term
sin 2rz appears in equation (3.21) governing the mean magnetic field Bn(z, t) which, in turn, is
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618 A. M. SOWARD

represented conveniently by a Fourier series in z. Hence for steady motion, the kinematic dynamo
problem is reduced to determining the eigenvalues (the growth rate of the magnetic field) and
corresponding eigenvectors (defining the coefficients of the Fourier series) of a complex tri-
diagonal matrix which are readily obtained by numerical computation.

For simplicity it is supposed that the horizontal boundaries are stress free, perfectly conducting
and isothermal. The boundary conditions for the mathematical problem are then just

w = 0?w[0z% = 0,
b, = 0%,[0z2 = 0, 0Bpf0z=0,} on z=0,1. (2.9)
0=06=0.

It may be anticipated that more realistic boundary conditions will not substantially alter the
results. ]
It is assumed that all dimensionless parameters are order 1 with the exception of ¢ which is
small,
¢ <1. (2.10)

Though the assumptions may not be physically realistic (e.g. o, ~ 10 in the fluid core of the
Earth) they have the mathematical advantage of restricting the solution to a single expansion
parameter. Consequently, the physical mechanisms are not obscured by multiple expansions.
Solutions are sought in powers of ¢} (or 7-1) so that, for example, the non-dimensional tempera-
ture 6 (see equation (2.2)) is written in the form

0 = {09z, 1) + 2OD(z, ) + ...} + {0 (1, z, 1) + H0D(wn, 2, £) +...). (2.11)

Similar expansions are adopted for the velocity and magnetic field vectors. The series representa-
tions are substituted into (2.4) to (2.8). The coefficients e, where n is an integer, are equated and
this leads to a hierarchy of equations which are solved systematically. Evidently the equation
of motion must be considered up to sixth order before the Lorentz force has any influence!
However, none of the important unknowns such as the velocity ©(© or the magnetic field B{® are
determined uniquely until this point is reached.

The whole expansion procedure hinges on the correct choice of Rayleigh number which is
assumed to be approximately R©(k); the critical value for disturbances with wavenumber £.
Most of the analysis is concerned with the case & = k¢, which makes R9(k) a minimum, since
this gives the lowest value of R for which convection can occur. It is supposed that R has the
expansion

R = RO(k) +eRO(k) + 2RO(E). (2.12)

The value of ® is the key parameter as it determines the convective heat transport and hence
the kinetic energy of the motion. Evidently this measure of the flow is fundamental to the dynamo
mechanism since it also characterizes the strength of the induction process. The inclusion of an
€% term at first sight appears unnecessary: But suppose the motion is made up of modes of wave-
number £, all differing slightly from some fixed value. Then the linear problem for each mode

1 If, instead of the stress-free condition, the no-slip condition is applied at the boundaries, the formation of
Ekman layers will have a controlling influence on the interior flow. The vertical motion induced by Ekman layer
suction will have the order of magnitude of the horizontal velocity modified by the factor T-%¢-(= e?) and to
lowest order w'V = — V2 p©@ (= — }k?'?) is the boundary condition to be applied to the interior flow at z = 0.

Though the results of the stability problem are not affected to lowest order, some modifications are required in
the subsequent analysis.
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would involve different values of 9(k). Now the analysis implies that B®(k) must be the same
for all modes (see (4.10), (4.11)). Consequently, provided R — BO(k) —eR®(k) is order €2, it may
be used as the definition of R® (k). Thus the ¢? term allows a little flexibility in choice of wave-
numbers for the basic disturbance (see figure 1).

R“”(k)l

n 3 A
ke k
Ficure 1. A schematic drawing of the neutral stability curve R® = k*+n?[k2. In the calculations R is given
and the wavenumbers considered are restricted by the condition that £—%, = O(e).

Finally the assumption, that the time scale is order 1, is a filtering approximation. It is the
technique usually adopted in geophysics and related subjects to filter out high-frequency modes
which are believed to be unimportant with regard to the general development of the system.
The procedure is, of course, consistent with the equations, but prohibits the consideration of
arbitrary initial value problems. The advantage of the approximation in the present context is
that it isolates the temporal development to the single diffusion time scale over which the dynamo
evolves. However, a fast time scale order €t is introduced briefly in § 6 when the stability of the
motion to order ¢} perturbations is considered. Though these are just the type of motions the
filtering approximation rules out, it is encouraging to find that they decay on the diffusion time
scale in any case.

3. THE EIGENVALUE PROBLEM AND THE MEAN FIELD EQUATIONS

The linear eigenvalue problem for £O(%) is developed within the framework of the expansion
procedures outlined in the previous section. Subsequent evaluation of higher order terms is
performed in a similar manner except that there are additional forcing terms resulting from
nonlinear interactions. Thus the simple calculations leading to the well-known equations (3.11)
and (8.12), given in their more general form by Chandrasekhar (1961), form the basis for much
of the analysis in §§ 3 to 5.

57 Vol. 275. A.
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620 A. M. SOWARD

To lowest order the flow is geostropic and the horizontal velocity satisfies the equations

i, x ul)) = — VppO, (8.1a)
V-ul® = 0. (3.1d)

Equations (3.1) have the solution
ul® = i, x Vpo. (3.2)

In order to determine ©{?, the horizontal components of the equation of motion must be con-

sidered up to order ¢, giving
i, xu = —Vup®+Viu, (3.3)

With the help of (3.2) the solution of this equation is
U = i, x Vp® 4 Vy (V2 p0). (3.4)
Since the continuity equation (2.8) gives
wO®[0z = —V-u, (8.5)
the divergence of (3.4) leads to the equation
W00z = —Vip® = — f4pO, (3.6)
where it is assumed that
V2O = —f2p0, (3.7)

The problem for u{? is completed by considering the order ¢ terms of the vertical component of the
equation of motion (2.45) and the order 1 terms of the heat conduction equation (2.64). This
gives, respectively,
0 = —p0[0z + o771 RO 6O + V2w, (3.8)
and
—o,w® = VE0O, (3.9)
Equations (3.6) to (3.9) may now be reduced to the single equation
2w [dz2 4 (ROK2 — ) w® = 0. (3.10)

Attention is restricted to the solution

WO (xn, z, t) = WO (¥, t) sinnz, (3.11a)
PO, 2,8) = — k%w«» (%n, £) cos 7z, (3.11b)
09 (s, 2, £) = %w«» (#n, ¢) sin 7z, (3.11¢)

which satisfies all the boundary conditions (2.9) and where

ROk = k* + (wk)2. (3.11d)
Of particular interest is the value
ke = wh[23, (3.124)
which defines the minimum value of £9(k), namely

RO(k) = 3nt/28, (3.125)
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CONVECTION-DRIVEN DYNAMO. I 621

Indeed it is this result which dictates the choice of horizontal length scale eL. At this stage it is
convenient to introduce the Fourier representation

WO (xp, t) = IkIZ_kzi)(O)(t, k) eik-x (3.13)
where #O(¢, k) = ©©@*(¢, — k) (here the star denotes complex conjugate) and summation is
over horizontal wavenumbers k. Since there is no restriction on the values of (9 (¢, k) the solution
is not unique. Indeed not only is the value of #9(¢, k) not fixed for any k lying on the circle radius
k neither is its evolution with respect to time! Hence the main reason for considering higher order
terms is to remove the degeneracy of the zeroth order solution.

The next step is to use the above results to obtain equations governing the mean temperature
00(z,{) and the mean horizontal magnetic field B{(z, ¢). Since only the zeroth-order terms for
the magnetic field are considered the superscript zero is subsequently dropped. The heat conduc-
tion equation (2.64) is considered first. The linear temperature profile is distorted by convection
of the fluctuating buoyancy 6© with the vertical velocity w®. On evaluation of (w®6©®) the effect
is readily determined from (2.64) which yields the equation

o, {0090t + (4mk2a, T O] RO) sin 2z} = 0200[0z2, (3.14)
where to lowest order
TO = K+ T,
Ro Ro
=T (WO = i :2, | 0Oz, k) |2, (3.15)
defines the mean kinetic energy per unit volume of the fluid. The particular integral of (3.14)
which takes account of the convective heat transport is

09(z,t) = OO(t) sin 2z, (3.16)
where
,(dOV[dE) + 47200 = — dnk202T O RO, (8.17)

An important consequence of (3.17) is that the mean temperature is independent of the individual
Fourier modes #©(¢, k) except in as much as they define the mean kinetic energy of the fluid (see
(3.15)). Of course, there are other solutions of (3.14) but since they decay with time they are not
investigated. At this point, it is perhaps worth anticipating the result @®(¢) < 0. It implies that
the linear temperature gradient is increased at the boundary. Since this gradient measures the
heat flux to and from the fluid, the increased value means that the thermal convection increases
the heat transport; a well known property of finite amplitude convection.

In many respects the mean of the magnetic induction equation is similar to (2.64). The
differences, of course, stem from the fact that it is convection of a vector field rather than a scalar
field. Thus unlike equation (3.14) which relies on the applied temperature for non-zero values of
09, the magnetic field Bn(z,t) is hopefully self-supporting. After all, this is the essence of the
dynamo mechanism. Fluctuating magnetic field is induced by stretching the mean magnetic field
by the local strain Vu(®. The process is described mathematically by equation (2.75) which is

readily solved to give
b = k2(Byp-V) u, (3.18)
where
uO = i, x VHO + w04 , (3.19)
57-2
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622 A. M. SOWARD

Moreover, convection of the fluctuating magnetic field by the velocity u#© may systematically
reinforce the large-scale magnetic field. The effect is determined by the mean quantity

QU x b0, = — (/kS) B+ (Vo @OV, @O sin 27z, (3.20)

which appears in (2.74). Tensors are introduced to keep the notation concise and the suffixes 1
and 2 are used to denote the x and y components of a vector respectively. Consequently with the
aid of (3.20), equation (2.7 a) reduces to

0B, 0 0%B;

-a?+27r/la—z(sin2nzM i B;) — 5z =0 (3.21)
where A=TOR, M, = [‘“21 ‘“22], (3.224)
%1 %2
__Ro Vi, 0O Vy, i© kik; k 22)
%j = s zm < Ya i Vaw Oy %‘T q(t, k), (3.220)
Ro
and (s B) = 57 |00, B)| (3.220)

The normalized quantities ¢(¢, k) have the property that
%1ty = kZ q(t, k) = 2:

the 2 reflects the fact that ¢(¢, k) = ¢(¢, —k). An alternative formulation of (3.21) is obtained
with the single equation

o + 27r1/loc— (¢sin 2wz) — 2¢

ot
1 da 1 ay, da 1d
— 1k AL (b A% 12 TP 2 i
— g - g -0 RS L2 e ia), (3.230)
where o = oy By + (0g5 +ic) By, (3.234)
and a = (deta,;)?, (3.23¢)

takes values between — 1 and 1. The second formulation is especially convenient when the flow
is independent of time as then the terms on the right vanish. The corresponding reduction of the
two variables B; and B, to the single variable ¢ simplifies the problem as well as reducing the
order of the equations. Finally in order to exclude a uniform magnetic field which is outside the
scope of dynamo theory (3.23) is solved subject to the initial condition

f:gbdz = 0; (3.24)

an integral constraint which subsequently holds true for all time.
When o;; and /1 are constants, solutions of (3.23) may be sought in the form

¢ = exp {Snnzt} ¢n(z)> (3‘25)
which leads to an eigenvalue problem for s,. Evidently there exist steady solutions

¢ = exp {—iad cos 2nz}, (3.26)
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CONVECTION-DRIVEN DYNAMO. I 623

provided oA is a zero of the Bessel function J(aA); a consequence of (3.24). However, it is clear
from (3.26) that no solution having the z dependence

b, = 3 A, cos(2m+1) iz, (3.27)
m=0

is steady. In view of the fact that, when A = 0, the mode with the slowest decay rate is

¢ = exp{—n%}cosnz,
it may be anticipated that the smallest value of A, for which there exists a non-decaying mode
(Res > 0), is less than the smallest zero of the Bessel function, namely A = 2.4048: while the
corresponding eigenfunction ¢, takes the form (3.27). Indeed numerical calculations (see

appendix B) confirm the prediction and it is found that the minimum value of A is 1.5974....
Since || < 1, this implies that the smallest value of 4, for which regeneration is possible, is

Agyyy = 1.5974..., (3.284)
and corresponds to 5o = 1(wp[n?) = — 1.39361. (3.28b)

Analysis of dynamo action by a steady velocity field suggests that a key parameter is the
magnitude of the product . This is not the case for unsteady velocity fields. Indeed it is possible
that periodic dynamos exist when a1 is zero and for values of A4 less than A,,! Consider, for
example, the case of motion made up of a single roll whose axis rotates with a constant angular
velocity . Such a motion is characterized by ¢(¢ k) = §(0—wt) +8(0+n —wt), where
k = (kcos 0, ksin 0) and the property that o = 0. A solution of (3.21) may be sought in the form

Bn(z,t) = B(2) k(wt) + B, (z) i, x k(w?), (3.29)
where the components B, and B, satisfy the equations
—~wB, = 02B,[02% (3.30a)
0 . 0?B
wB, +4nAd 5 (B,sin 2nz) = az;—' (3.300)

The assumed flow is a special case of a more general class of fluid motions considered in §8.
Indeed equations (3.30) are obtained from (8.8) when X = 1, ¥ = 0. Without going into a de-
tailed discussion about the equations, which is left until §8, it is evident that with a sufficiently
large value of 4 dynamo action can be expected. For small values of A all the eigenvalues, v,
come in complex conjugate pairs and complex  is physically meaningless. When A equals A
where

rot
Apop = 1.0824, (3.31a)

one pair of complex eigenvalues coalesce to give a repeated real eigenvalue which corresponds to

the frequency
o/n? = —0.9255. (3.314)

When 4 is increased still further w/n? splits into two distinct real eigenvalues, i.e. two possible
regenerative modes. It is this property which distinguishes the eigenvalue problem (3.30) from
(3.23) when u® is independent of time. In the latter case w/x?is only real when A takes discrete
values; the smallest being A, The omission of the term ¢* in (3.234) which reduces the order
of the equation leads to a degeneracy. Thus, whereas (3.30) determines By, uniquely except for
its magnitude, the solution of ¢ in the previous paragraphs is only fixed up to a complex constant.
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624 A. M. SOWARD

Consequently the magnitude of the magnetic field has two degrees of freedom; one its magnitude,
the other its phase. One final point may be made: though a solution of the type (3.29) is ex-
tremely simple, it is special when regarded as a kinematic dynamo. In general it is reasonable
to prescribe both w and A in which case (3.29) cannot be expected to provide a solution. In spite
of these remarks, the model is a prototype of a more general class of motions which arise naturally
when the hydromagnetic dynamo is considered.

4. THE FINITE AMPLITUDE SOLUTION

The analysis of the previous section is extended to obtain expressions for second-order quanti-
ties such as w®( &y, z, ¢). It is found that corrections to the bouyancy force due to R®(k) and to
the non-uniform gradient of the mean temperature 09©/0z can be in equilibrium provided the
kinetic energy 7 © takes the constant value defined by (4.11). At this stage the magnitude of the
individual Fourier modes #©(¢, k) is still undetermined, even though the values of the mean
quantities @© and 7@ are fixed. Thus the magnitude of the flow adjusts in such a way that the
vertical heat transport as measured by the Nusselt number 1—e[00®[0z],_,+ O(e?) takes a
value determined by R®(k).

The order €} terms in (2.44) are again in geostropic balance,

ull) =i, x Vpo.
The order ¢t terms yield

(1)) u® VO i, x 4P = — Vp® 4 Vi, (4.1)
which has the solution ul® =i, x VE® 4+ V[ VR p0], (4.2)
where E®) = §® 4 (p[v) (K2pO* + V2 pOR). (4.3)

Moreover, since the nonlinear interactions #{?- Vuw©® and u{®- VO© vanish, the single equation
governing thefirst-order solutionisidentical to (3.10): noinhomogeneitiesoccur on the right-hand
side of the equation. Consequently, the first-order terms can be assumed to be zero without loss
of generality.

The analysis continues, duplicating the arguments (3.1) to (3.11) at the e-level. First the

order ¢? terms in (2.4a) give
ul® = i, x Vn p9—i, x Viu), (4.4)

and substitution into the continuity equation (2.8) leads to
w®[0z = —k*p3, (4.5)
where, as in §3, it is assumed that
V2 p® = — k2%, ' (4.6)
The equations corresponding to (3.8) and (3.9) are

— 3Oz + 01 RO O® + VEu® = — g7t ROOO = — (RO[k2) @O sin nz, (4.7)

o, w®+Vi0® = ¢, w® (d0O0[dz) = no, OOB© (sin 3nz —sin z). (4.8)

The equations (4.5) to (4.8) are dominated by the buoyancy forces on the right of (4.7) and (4.8).
The only nonlinear interaction results from the convection of the mean horizontal temperature
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CONVECTION-DRIVEN DYNAMO. I 625

©9(z,t). Hence no new horizontal wavenumbers are introduced and the fact provides justifica-
tion for the assumption (4.6). The equations (4.5) to (4.8) have the solution

2
w(&n, z,t) = WA(%y, 1) sinwz + ék;z RO @O (xy, 1) sin 3rz, (4.9a)
_ 3 _
PO (xn, 2, ) = —I%w(z) (1, 1) cos 72 = = RO (1, 1) cos 3rz, (4.95)
6 1 Q2 R
00 (xn, 2, 1) = %{wm (%n, 2) — 2( WO (0, t)}sm T:z+0'ﬂkk6-:_7:; R _WO (x,1)sin3mz,  (4.9¢)
provided O©(t) takes constant value
60 = — RO/ RO, : (4.10)
It follows from (3.17) that the kinetic energy is
T O = R®[k20?, (4.11)

which is also constant. Since 7 is only positive when R® is greater than zero, it is to be expected
that the equilibrium is stable.
Now that w® and 6@ are known, it is possible to determine &®(z, t). The quantity

(W OO + YO

is computed and substituted into the mean equation (2.62). The equation corresponding to
(3.14) is then

000  figlTOr

TR —F {2(kS + 572 sin 47z — (k8 + 9n?) sin 2wz}
drkio 026®@
.9 =g l——
70 I @sin 2nz = o, o (4.12)
where T® = (ROJ2k) (@ w©), (4.13)

Again the free decay modes are ignored and the particular integral forced by the convection is

. k4ﬂ' 2 g .
0 = — gy (k + 572) sin 4z — 2(k8 + 9n2) sin 2nz} + OO(¢) sin 2rz, (4.14)
d@(z

where

+4n20,7100 = — 4“}; T9 g, (4.15)

Whereas in §3, () and 7@ were left undetermined, their values are fixed but now it is the
corresponding quantities @®(¢) and 7 ® which are unknown! The precise form of the velocity as
defined by the Fourier modes #(¢, k) is still undetermined; however the kinetic energy, as
defined by .79, provides an important constraint on possible motion.

5. THE EVOLUTION OF THE VELOCGITY FIELD

Since the zeroth-order quantities are still unspecified, the analysis of the equations is continued
until equations governing the order €2 quantities such as w® are obtained. The equations are not
solved but the condition that they have a solution leads to equations governing the evolution of
#O(t, k). Thus the prime objective is the determination of equation (5.12). Some of the coeffi-
cients appearing in this equation have lengthy algebraic expressions which are derived after
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626 A. M. SOWARD

tedious manipulation. However the details of the calculations are unimportant and with the
exception of the terms arising from the Lorentz force it is only certain gross features of the co-
efficients that are needed for the subsequent analysis.

First the equations governing the ef terms are

7—’-{ © egh +u@-Vu® + u- Vu‘z)} +i,xuU® = — Vyp® + Viu®, (5.1a)
14

(
! {-a% (WO — () + V- (00 4 1@ ugv)} _ %— + o7 ROPO L VWO, (5.10)

o {a% (OO0 — (OGO + V- (60 4 6@ ug»)} o u® = V6O, (5.1¢)

After some simplification (5.1a) becomes

i, [u®+ 2L v, [rewor 4 (O 2 Zv,g0 14, x v(v2em) (5.20)
: )37 5 2 x V(VE®), :
where 0 = 0+ Ao + 1RO} (5:20)

The continuity equation is used to eliminate 4> and £® and leads to the equation
%w;- Vap® = — 1 3 [{iV6 wO" + k2V3 w®% cos® iz — kL VE w7, (5.3)
Similar reductions to (5.15) and (5.1¢) lead to

— gj—)—) +0,t ROO® + VEu® = 1 7 {in WO? + k(0O — {wO) \ »}sin 2nz, (5.4)

and o, w®+VE OB = a'2 = {iV WO + k(0O — (wO"))} sin 2z, (5.5)

while further elimination of #® and p® from (5.3) to (5.5) yields the single equation

23
a@Z — ROV2u® 4+ VEuw® = 1 ——k— = (K + m2) VE[VRiw©" + (4 — o) k2 VE 00" — 4okt @"] sin 2nz.
(5.6)
Finally the particular integral of (5.6) is just
w® = ”Z kzlkl ky? V(| ky+ ky|) 0O(2, ky) DO(8, ky) eltath) ¥ sin 27z, (5.7)
— 1 (k8 4+ 72 (K2 — 4f2 21 K2
whiere V(K) = o1 W) (K2 4F) (oh*+ K% (5.8)

Tt (K2 4K2) + KR (ki — K0

The other variables p®, £® and 6® are readily obtained from (5.3) to (5.8).

The investigation proceeds to the €3 terms. At this level of approximation all effects previously
neglected are important. The most notable are the terms involving the time derivative and the
Lorentz force. The equations corresponding to (5.1) are

F+i, x ufp) = — Vyp® + VEu®, (5.90)
Fy = — Oz + 0y ROOW 1+ V3w, (5.90)
Fy— o u® = V3OO, (5.9¢)
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CONVECTION-DRIVEN DYNAMO. I 627
where
ouf® M2 02ufY

F = g{—e—t“—+u§f>-w O+ u)- Vu‘”}—-ﬁ(Bh-V)zug”— az;] , (5.10a)

ow© M? 0%©®

F, = 77{ %’t +u®- VO 4 u ).Vw(a)} — 0-;1 R(2)0<2>_0-”—1 Rwpo _ _15_2_( By-V)2u© — 61;]2 ,
(5.100)

I o 3. 700 4 0. 70 4 00207 | @000 _ 00

Fy =0, {—a—+u VOO +ui?- VO + w 5 TP —- }— R (5.10¢)

AL A

which can be solved provided

1 (2%
2< f exp {—ik-#}sin mz [vh. <iz x %) Lo RO vg&fs-vgz—ﬂMwm] dz> —0, (5.11)
0

for all | k| = k. Direct evaluation of (5.11) leads to equations governing #‘¥(¢, k). The nonlinear
terms involving w® lead to cubic expressions. However, most of these terms vanish as the sum
k, + ky+ ky + ky, where |k;| = k(i = 1, ..., 4), is zero only if the corresponding vector diagram
forms a parallelogram. The resulting equation is

A0/t + 3 A(R', k)| O(t, k') |2 0O — dm(t, k)w® + §r(k) O — 3B(k)OD(£)d® = 0, (5.12)

>
where Ak, k) = (fv)2 (k% )i, T(|k+E'|, k, 0), (5.134)
m(t, k) = k=2k;my;k;, (5.135)

OF

f (w%cos? wz —kSsin?nz) B; B;dz
{r2(0—1) + k8 (o + 1)} ’

o g? {371:21:6 - KARO(E) + (K + 250%) o4 T O/ (8:2R0)}
r(k) = 25 w2 (0 —1) 1o +1)

Rogs
) =25 BT

(5.13¢)

(5.13d)

(5.13¢)

and I'(K, £, o) is a lengthy algebraic expression involving K2, k2 and o.

At first sight the presence of the @®(¢) term in (5.12) is unexpected. It may be recalled, though,
that the kinetic energy is already fixed so that there is an additional relation between the 0@ (z, k).
Hence it is only possible to solve (5.12) if

pOR(t) = § D [r(k) —m(t, k)] q(4, k)3 (5.14)

an identity readily obtained by multiplication of (5.12) with #©*(, k) and summation over k.
(Note that the time derivative and nonlinear terms vanish because L |9©(¢, k)|? = constant and
A(k', k) = — A(k, k') respectively.)

Equations (3.21), (5.12) and (5.14) govern the evolution of the hydromagnetic dynamo.
The equations derived in this section governing the motion are attractive because all dynamical

A

A

SOCIETY

effects are included. However, some care should be taken in the interpretation of (5.12) on account
of the term involving @®(z). For example, though magnetic fields are known to relax the con-
straint of rotation this does not have the effect here of permitting the velocities to increase.
Instead buoyancy forces are invoked via the order e perturbation ©®(z,f) which inhibit any
such growth. The réle of (5.12), is therefore, subtle as it governs the evolution of the velocity

OF

58 Vol. 275. A.
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628 A. M. SOWARD

field subject to the constraint that it should lie on a constant energy surface. Of course, the exact
values of O(t, k) are of vital importance to the dynamo process. Consequently the role of (5.12)
is crucial in the study of the hydromagnetic dynamo as will be seen later in §§ 7 and 8.

6. DYNAMIC STABILITY

The analysis up to this point has pivoted upon the construction of a quasi-steady solution
which evolves on the slow diffusion time scale; the filtering approximation. Thus the stability of
the flow to order e perturbations which vary on the fast time scale et is now investigated to justify
the procedure.

Most of the results of the previous sections need only small modifications to cope with the new
situation. In fact it is only terms involving time derivatives that need reordering. In anticipation
of the result #O(¢, k) is replaced by

DO(1, k) + X[V (1, k) + 2P (¢, k)] exp {iwt/et} + A [@2 (¢, k) + (2, k)] exp { —iwt/e}}
+e[@P (8, k) + WP (¢, k) exp {2iwt/et} + D (1, k) exp {— 2iwt[e}}] +..., (6.1)
while @®(¢) is replaced by
OO(f) +Re[(OP(f) +2OP(1)) exp {iwtfe}] + et Re[OP (1) + OP (1) exp {2iwtfed}] +.... (6.2)
The motivation for the expansion of the vertical velocity originates from the necessary violation

of the constraint (4.11) on the kinetic energy at the ¢? level. Since (3.14) to (3.17) are valid to

order et the equation
$HwOP = — 0o, mk? Ekj (O* I 4 O yF) (6.3)

is readily obtained. Moreover, the rapidly oscillating mean temperature does not effect @ (¢, k)
until (5.12) is considered. Here the order 1 terms fluctuating on the short time scale are equated
and yield the equation

i@ — 140 6P = 0, (6.4)
It follows that Y = —1 5) 00 6@, (6.54)
A, = iﬁ DO @@ (6.50)

— 4(0 1 b .

where the frequency of the oscillation is given by
w? = 4no, kB2AT O RO, (6.6)

The above analysis demonstrates the existence of rapid oscillations which may be super-
imposed on the quasi-steady solutions and can persist over the diffusion time scale. The vital
question, therefore, is whether these oscillations grow or decay. To answer this question the
analysis must be extended to the next order. Since it is the elimination of the secular terms
which determines an equation for @®(t), only the first harmonics are considered. For these
particular terms, equations (3.14) and (5.12) are still valid so the equations corresponding to
(6.3) and (6.4) are just

1d6Y

3 1(0@“”—!—0‘ ok~ 22 (w(O)*w(2)+w(O) {2)*)] _|_2 It +on20 ?71 @”(12) =0, (6.7)
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. T
liwa® — 1p00 69 + 32018 o5 gk, By 00, k7))2
dt 4w &
—§m(t, k) +4r(k) — 30D (1)} 00 6P = 0, (6.8)

where the substitutions (6.5) for &4 have already been made in some terms of (6.8). Further
simplifications of (6.8) follow from the use of (5.12) which leads to the equation

. i 52 .
[iw@? — 1@ &P — ;—ﬁmm {—cld@Tl +2X A(K, k)| (2, k') |? @(2)} = 0. (6.9)
2
Finally #® and 6® are eliminated from (6.7) and (6.9) giving
(2) _
d?; +2n%0, 109 = 0, (6.10)

where terms involving 4(k’, k) vanish because of the skew symmetry. Since @ decays on the
diffusion time scale it may be concluded that the model is stable to order €} perturbations.

7. DISCRETE MODAL ANALYSIS

The final two sections of the paper are devoted to a class of solutions of the hydromagnetic
dynamo equations derived by asymptotic analysis in the previous sections. There are essentially
two sets of equations. First, the evolution of the mean magnetic field B{¥(z, ) is governed by
(3.21). Secondly, solution of this equation requires knowledge of ¢(¢, k) which is governed by

% (6 k) +2 3 A(K', k) (1, k') (4, k) = [m(t, k) =3 Zm(s, k) (2, )] (2, )
+r(B) =3 Zr(K) g(6 )] g(t, k) = 0, (7.1)

an equation determined from (5.12) to (5.14). Though the mathematical problem posed by these
equations is tractable, their nonlinear character and the remaining z-dependence provide severe
obstacles to completely analytic solutions. It may be recalled that, since the layer is unbounded in
lateral extent, ¢(¢, k) is defined for any k lying on the circle radius £. If any ¢(¢, k) is initially zero
however, it remains zero and hence attention may be restricted to a discrete set of modes defined
by a finite set of horizontal wavevectors k,(n = 1, ..., N). In this case the velocity is defined by

N
a0 (xn, 1) = 2Re 3} AO(, k,) exp {ik,* #}. (7.2)
n=1

When N = 1, the motion is defined by a single roll whose axis is the fixed direction k,; and has
constant magnitude |&(¢, k,)| = 1. Since the dynamical equation (7.1) is redundant, the problem
reduces to the kinematic dynamo problem (3.21) for constant A,;. Unfortunately, though this
is the simplest possible case, the dynamo must fail, as @ = 0. Quite simply, the motion lacks the
asymmetries necessary for dynamo action. Evidently the motion necessary for a workable dynamo
must be represented by two or more such rolls (i.e. N > 2). If the Rayleigh number (or in parti-
cular R® and hence 7© and A) is sufficiently large and the asymmetric nature of the motion
is maintained there is little doubt that the dynamo will succeed. The latter criterion highlights
the main difficulty, since in certain problems concerning the stability of finite amplitude Bénard

convection it is known that the single roll (N = 1) is the only stable case. Therefore, it might be
3]
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630 A. M. SOWARD

expected that, if initially a finite number of ¢(4, k,) are non-zero, all the ¢(¢, k,) except one
approach zero, as £ - 0o, in which case the dynamo fails. In this section investigation of two models
based on two and three rolls show that this need not be the case and demonstrate the existence of
stable hydromagnetic dynamos.

In the first model, the motion is the superposition of two perpendicular rolls, Here N = 2 and

By = (£,0), k= (0,). (7.3)

When dO(t, k;) = ©©(t, k,), the resulting motion is confined to square cells. In the second model,
the motion is the superposition of three rolls whose axes intersect at an angle of 3x. Here N = 3
and

ky = (k0), ky=(—13k32k), ky= (-3} —\/3/2k). (7.4)

When all three #¥(t, k,) are equal, the resulting motion is again special and confined to hexa-
gonal cells. The first case is treated both analytically and numerically, while only numerical
results are presented for the second case. It is the latter case, however, which provides the key to
an analytic solution of a continuous modal distribution described in §8.

(a) Analytic results, N = 2

The case N = 2 is examined. The substitutions

Q(t: kl) = %-}-U, Q(t, kz) = -%-—-1), (7'5)

reduce (7.1) to the more symmetric form

;:;%+{7/+4M2$(B§—B§)}(i—-vz) = 0, (7.6a)

where ny = r(ky) —r(ky), (7.60)
M = % Mo — 1) + o+ 1), (7.6¢)

L(f) = J: (cos2 nz—i—isiﬁ nz)f(z) dz. (7.6d)

The vanishing of all the terms involving A(k’, k) is exceptional and results from the equality
A(ky, ky) = — A(— ky, k,), peculiar to the case of two perpendicular rolls. Except for the added
complication of the z-dependence, the set of equations (3.21) and (7.6) are reminiscent of the
equations governing the Rikitake two-disk dynamo (Rikitake 1958; Cook & Roberts 1970).
Solutions of these new equations, however, do not appear to exhibit the feature of sudden re-
versal characteristic of the two disk dynamo equations.

The case of no magnetic field is readily treated and yields a solution

v = —}tanh (§=?yt), (7.7)

fory # 0.Since non-zero y corresponds to two values of k differing by order ¢ it is clear that
stability is ensured only if the magnitude of the two wave numbers are identical. The numerical
results of the next section show that when y % 0 the presence of magnetic field is able to prevent
the ultimate decay of one mode, at the same time providing a periodic dynamo (see figure 3).
This example is evidently important as it demonstrates the stabilizing influence of the magnetic
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ficld to an otherwise unstable configuration. Some analytical progress can be made towards
understanding the physical mechanisms involved by supposing that

M2« 1, (7.8)

and that y = 0. Though the assumption y = 0 eliminates the source of the instability in the non-
magnetic case, it isolates the influence of the Lorentz force when a small magnetic field is present.
For steady flow, the square cell provides the most favourable motion for dynamo action. Conse-
quently a perturbation scheme is developed in which

A = Ay + M2A9, (7.9a)

and v =M%+ O(MY). (7.9b)
It is convenient to introduce the complex function

¢ = (1+20)% B, +i(1—20)} B,, (7.10)
defined by (3.235), and to consider (3.234), namely

0  2v¢— (§+0) p*dv . 90,, . 0%
Fri ——T_:Z?—wa-+2n1A(1-402)%52(¢s1n 27rz)—6z2—= 0, (7.11)
in conjunction with
tde )
S I 22(|BY) ~ 1L ($+ %) = 0, (1.12)

obtained from (7.6) by a change of variables. Evidently the solution of (7.11) takes the form
B(z,t) = a(1) D(2) et + O(M2) (1 = M2), (7.13)

where @(z) is the eigenfunction ®(z) corresponding to the eigenvalue iwg/n? = s, (see (3.28)

and appendix B), when A = A.,,. Moreover, it transpires that the amplitude «(r), which is

undetermined at this stage, is modulated over a long time scale. The small fluctuation M2v®, mea-

suring small changes in the individual amplitudes of the two rolls is just

n2a? L (D?)

21w,

D - Re{ eZiwot}, (7.14)
which is readily determined from the order M2 terms in (7.12). Before the order M2 correction
to ¢ can be obtained from (7.11), the condition that the secular terms should be eliminated
provides an equation governing «(7). This is achieved most simply by multiplying (7.11) by
@4(z), the adjoint eigenfunction defined in appendix B and taking the z-average. The order
M? terms of the resulting expression yield the equation

i d
Fa—g—%Alalza+%Ca=0, (7.15)
A *
where A= %%—i%%f(d)z), (7.164)
24O ((004)0z, 00/02) | .
C= =il o) (7.169)

and (@4, B) — f 01 BA(2) B(2) dz. (7.16¢)


http://rsta.royalsocietypublishing.org/

A

'\
\
JEN
L

fao
A Y

Y |
p &

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y \

/7

N
N A
AL A

N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

632 A. M. SOWARD

Numerical values of the complex numbers 4 and C are given in appendix B. In particular,
when % = £ (the case of principal interest), the real part of 4 is positive and the real part of C
is opposite to the sign of A®.
An equation governing the amplitude |a(7) | is derived from (7.15). In terms of the new
variable X=|a|? the equationis 1 qx
r2dr
where X, = Re C/[Re 4. There is an equilibrium point at X = 0, and (provided A® < 0) an
unstable equilibrium at X = X. In the latter case the phase of a(7) may vary with time and can
be regarded as providing an order M2 correction to the frequency w. If 0 < X < X,, then X ap-
proaches zero, as ¢ — oo in which case the the dynamo fails, whileif 0 < X, < X, then X tends to
00, as {00, in which case all that can be concluded is that the field initially grows. Eventually
the magnetic field must go outside the range for which the present asymptotic treatment is valid.
The various terms in (7.15) deserve interpretation. Clearly the linear terms are readily under-
stood on linear theory. In particular, if the magnetic Reynolds number is increased above its
critical value the field grows. The nonlinear term involving 4 may be traced to the effect of a
time-dependent velocity in the magnetic induction equation. Within the framework of the
perturbation analysis it is possible for the magnetic field to grow even when A < A4, There-
fore it is to be expected that the minimum value of /1 for which hydromagnetic dynamo action can

=Red (X—X,) X, (7.17)

be sustained indefinitely is less than A, and corresponds to a fully time-dependent motion.
The conclusion is hardly surprising when the results of the kinematic dynamo problem for a time-
dependent motion in §3 are recalled. Moreover, one might ask if A4,; (see (3.31)) provides the
minimum value of A for which hydromagnetic dynamos are possible and if it is attained? A
partial answer to the question is provided in §8.

What is the ultimate fate of the dynamo described initially by (7.17) when 0 < X, < X?
First, the magnetic field b may become order 1 in which case a study of (7.6) and (3.21) is ade-
quate. Secondly, b may continue to increase beyond this value in which case the asymptotic
analysis based on A order 1 is inadequate i.e. the analysis of the weak field limit becomes in-
appropriate. Thirdly, the magnetic field may ultimately decay to zero; a possibility suggested by
the case of a single roll. The second possibility is outside the scope of the present paper, but is at
present being investigated by Childress (1974). The first possibility is considered in detail in
§§75, ¢ by numerical integration of the governing equations and analytically in § 8.

(b) Numerical results, N = 2

In § 74 it was natural to base a perturbation procedure on equations (7.11) and (7.12). How-
ever, for the purpose of numerical calculations, it is easier to consider (7.6) in conjunction with
(3.21). In order to isolate the most unstable modes it is supposed that the magnetic field can be

expressed in the form ©
Bu(z,t) = 3 B{™(t)cos (2m+1) nz. (7.18)
m=0

The representation filters on the even modes which presumably decay anyway for the rela-
tively small values of A considered. Though a restricted class of solutions is investigated, it is
reasonable to suppose, on the basis of the kinematic analysis, that the most readily excited mode
iseven.

The dynamo equation may be reduced to an infinite set of equations governing B{™(¢). These

are 1 ngm) = (m, m) R(n) 2 B(m)
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0 —1+4+20
where M;; = [1_'_21} 0 ],
— Kmym+l) = Kmm=1) = 2 4 1, (7.195)

K00 =1 Kmm = otherwise,

while the quantities .Z(B%) and Z(B3) in (7.6) are defined by

4%(B,B,) = (1K) (,:o Bgm»Bg.m)) 31+ Km2) {B;.w BO + m§0 (B{™ Byr+ 4 B Bgmw)}.
(7.20)

In all subsequent calculations the free parameter £ is set equal to k¢, thus restricting attention to
the most unstable modes.

The numerical calculations were performed by taking only the first ten harmonics. Specifically,
the approximation involves setting B{™ = 0 when m > 10. The resulting twenty-one equations
were integrated numerically by the Runge-Kutta method with B{(0) (0 < m < 10) and
v(0) given.

A partial check of the numerical scheme is provided by reproducing the results of the eigen-
value problem already considered in § 3. The initial value problem

(B{™(0) +1B§™(0)) cos (2m+ 1) nz = D(z), (7.21a)
' 2(0) = 0, (7.218)

where the coefficients B{™(0) and BJ™(0) are listed in the first two columns of table 1 (see
appendix B), is considered for the case 4 = Ay, ¥ = M2 = 0. The values of B{(t) and B§™(¢)
after a time £, = 2m/w, (the period of an oscillation) are compared with their initial values. With
a time step Af = £,/800, agreement to seven decimal places may be obtained. It is reasonable to
suppose that, with the addition of just the single equation (7.6), integration of the full nonlinear
system is of comparable accuracy.

Results for y = 0 indicate that hydromagnetic dynamos can be sustained with 4 < A,,.
The results of a calculation with A = 1.548, M2 = 1.9 and A¢ = £,/1600 are shown in figure 2.
The same initial values of B{™(0) are taken as in the kinematic problem. Indeed, these initial
conditions are adopted for all initial value problems considered in this section. By a time 15¢,
the solution appears to be rapidly approaching a limit cycle, in which the period is approximately
0.9f, and the average magnetic energy

E(t) = 3312 f 01 Bidz

s

fluctuates slightly about the value 0.7089 attained when v = 0. It is interesting to note that the
magnetic energy is increased when v takes its largest values close to v = + 1, where det M; is
small. This is contrary to the results of the kinematic dynamo with a steady velocity field for
which (1 —4v2)% A is the crucial parameter, but is consistent with remarks made about unsteady
velocity fields at the end of § 3.

The physical process is readily understood. First, v increases (decreases) when the magnetic
field B{"™, as measured by #(B3), is greater (less) than By®. It is also evident from (7.19) that
creation of the field By is most favourable when v is large and positive and B{™ is also in some
sense large. Now, as v increases to its maximum value, where Z(B3) = Z(B%), B{™ is decaying
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slowly. However, the induction due to the large value of v becomes quite efficient. Consequently,
both B{™ and the magnetic energy E(t) increases. But, as v decreases from its maximum value,
B{™ is still decaying so that there is less B{™ to convect. The decay continues until » approaches
its largest negative value, where the process is repeated; but with the field components reversed.

The case y #+ 01is also of some interest, since there is no reason to suppose that £ is exactly equal
to k¢ in practice. Now, it has already been observed that, when A2 is zero, one of the two rolls
ultimately vanishes (see (7.7)). Therefore it is possible that the stabilizing influence of the mag-
netic field is not sufficient to overcome this tendency. If this is indeed the case, solutions obtained
when y = 0 must be regarded with suspicion. Numerical integration of the case y = 1, M2 = 5,
A = 1.7, however, demonstrates the existence of such a hydromagnetic dynamo and the solution
is illustrated in figure 3. Convergence to the final limit cycle of period 0.8, is achieved after a
time 5¢, which is far quicker than the case y = 0. It should be noted that in both the cases y = 0
and vy = 1 the values of 4 chosen for the integrations were approximately the smallest values
capable of sustaining the magnetic field. Several other calculations were, in fact, performed which
indicated that asyis increased so the value of A necessary to maintain the dynamo is also increased.

The behaviour of the solution in the limit cycle for the case y = 1 is discussed briefly. The
oscillatory nature of v is qualitatively similar to its behaviour in the case y = 0. There is, though,
a tendency for it to approach —$} and at this stage the field is clearly decaying quite rapidly.
The loss of magnetic field at this end is compensated by relatively efficient dynamo action for
values of v close to its maximum positive value. At this stage the mechanisms involved are pre-
sumably similar to the case y = 0, when v is close to its maximum value.

(¢) Numerical results, N = 3

Though the simplest case to consider is that of two rolls, there is no reason to suppose that it
would be attained in practice. For example, could a different combination of rolls provide a
hydromagnetic dynamo with an even smaller value of 4? The results of this section suggest that
this is indeed the case and pave the way for the solution discussed in §8. The case N = 3 is not
general, of course, but it does highlight some new aspects of the hydromagnetic dynamo problem
which are probably typical of the general case.

To keep the number of free parameters down to a minimum it is supposed that r(£) is the same
for each roll. Asin§ 75, itis necessary to consider the magnetic induction equation (7.19), but this
time

Tl d+ia $4/3(g5—72)
where ¢; = ¢(t, k;) and k; is defined by (7.4). The nature of k; implies certain symmetries for
the quantities A(k’, k) defined by (5.13). In fact (7.1) depends only on one parameter 4 where

M. = +34/3(92— ) "‘%(42+93)]’ (7.22)

3
A(ky, k) + A(—kyy k) = —3n% A El €1ij- (7.23)
Hence equation (7.1) reduces to the two equations

L0 (4443012 (B, B)) gy (A+ 302 LBy~ BY) — 2330 2(B, B)) g} gy = O, (7.240)
1 dgy
2 di¢

+{(A— 3012 Z(By— BY) —2/3M* Z (B, By))q, — (A-+ 430> L (B, B)) g} g, = 0, (7.248)

59 Vol. 275. A,
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Fiure 3. As for figure 1, for the case y = 1, 4 = 1.7, M? = 5.
where Gitgetgs=1 (7.25)

and % (B, B;) is defined by (7.20).
When the magnetic field vanishes (7.24) can be integrated once giving

719203 = 37(1—§) (0<E< 1), (7.26)
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4ft)-plane

F1cure 4 (a). The magnetic energy E(t) is plotted against ¢, () for the case 4 = 0, A = 1.45, M? = 1.0. The plot
begins at ¢ = 5¢, and numerical integration with a time step A¢ = #,/1600 is continued until ¢ = 15,
(b) The corresponding plot of » against ¢ during the period ¢ = 14.25¢, to ¢ = 15¢,. (¢) The locus of the point
(41> 935 ¢5) during the same period. Note the symmetries described in §7 and the beginning of §8.

where £ is a constant. Consequently the orbit of ¢ = (¢4, ¢5, ¢5) lying on the plane defined by
(7.25) is closed and similar to that illustrated in figure 4¢. The position on the orbit at time ¢ is
most conveniently obtained by consideration of the quantity

Q192+ 420s+ 4391 =31 —9(0)]. (7.27)
Thus ¢;, ¢, and ¢, are the three roots of the cubic
P=+5(1-m) ¢—(1-§) =0, (7.28)
where 7(#) satisfies the equation
(8/4r%) (dp[dt)® = 49®— (£~ 37)?, (7.29)

which has solutions in terms of elliptic integrals. Evidently an orbit corresponds to the trivial
solutionv = constant for the case of two rolls, when y = M? = 0. The solution (7.26) is an interest-
ing result in the context of non-magnetic Bénard convection. First it shows that the hexagonal
cell ¢ = (3, %, ) remains steady. Secondly, though no other q is stationary, the existence of closed
orbits shows that the motion represented by the superposition of three rolls interacting at an angle
of 3w does not degenerate into a single roll.

The case 4 = 0, A = 1.45, M? = 10 is considered in detail. Since the dynamo fails with the
initial data (7.21a) the initial condition B,(0) +1B,(0) = ®*(z) is used instead. Numerical
results with A¢ = £,/1600, are illustrated in figure 4. Figure 44 indicates that the solution ap-
proaches a limit cycle with period approximately 0.9¢,, while figures 44, ¢ illustrate the dynamic
behaviour in this limit cycle as measured by q. It is interesting to note that in this cycle the point
q is never close to (3,3, %) instead, it keeps close to the boundary triangle. Moreover, ¢ spends
most of its time in the vicinity of the corners and it is here that the magnetic energy is intensified
(see figure 44). The most natural symmetric plot of the magnetic energy is in a 3-dimensional
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space formed by the g-plane and the E-direction. Clearly the asymmetric character of figure 3
is misleading and is best regarded as a projection of the symmetric 3-dimensional configuration.
An interpretation of the physical mechanisms involved is similar to that given in § 75 for the case
y = 0.

The cases A = +5, A = 1.53, M2 = 15 were considered also. Limit cycles were approached
for which the magnetic field displayed the same qualitative features as the case 4 = 0, while the
magnetic energy E(t) fluctuated between 1.663 and 1.717 for the case 4 = 5 and 4.063 and 4.196
for the case 4 = — 5.

8. CONTINUOUS MODAL ANALYSIS

Though it is consistent with equations (3.21) and (7.1) to consider only a discrete set of modes,
it is somewhat unsatisfactory to treat the stability of the system on this basis. Indeed, if the solu-
tions are regarded to be the ultimate response of the system to an arbitrary initial disturbance, all
modes with | k| = k. must be considered, together with modes in the neighbourhood of this circle.
The full problem is evidently a formidable undertaking and is not attempted. Instead a class of
periodic solutions, which can be represented by a continuous distribution of modes restricted to
the circle |k| = ke, is investigated. As in the previous section the restriction on £ isolates the
influence of nonlinear effects and the Lorentz force in (7.1), since the term involving r(k)
vanishes.

The solutions are suggested by the case N = 3, considered in §7¢, which is hopefully typical
of caseswith N > 3. Obvious features of the solution are thenegative frequency w and the property

ga(t+47[30) = go(t+ 27[3w) = ¢,(1), (8.1)

in the final limit cycle. Evidently the corresponding form for the continuous case is
q(t, k(0)) = Q(0 —w1), (8.20)
where k(0) = k(cos,sin6). (8.20)

For the discrete case N = 3, a Fourier decomposition of the time dependent magnetic field in-
cludes all harmonics ei”¢, where n is an integer. However the magnetic energy is characterized
by the property

E(t+4n[3w) = E(t+27n[3w) = E(t) (8.3)
as is readily seen from the plot of E against ¢, given in figure 4a4. Thus the argument, which leads

from (8.1) to (8.2), when applied to E(t), implies that the magnetic energy is constant. Conse-
quently the magnetic field is likely to be represented by a single harmonic, say

Bu(z,t) = B,(z) k(wt) + B, (z) i, x k(wt), (8.4)
for which the magnetic energy

_ 1
E- -%szo (BY(z2) + B (2)) dz (8.5)

is constant. It is a simple matter to show that in a frame rotating with angular velocity w both
the magnetic field and velocity are steady but, of course, part of the steady motion is a solid body
rotation with angular velocity — w. In spite of the plausibility arguments, it is remarkable that
(8.2) and (8.4) are consistent with the governing equations and fortuitous that the resulting
equations admit solutions!
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The stability of the solutions is only investigated in the limit M2 — 0, for which an analysis
similar to that of §7a shows that the solutions are unstable. The arguments of the previous
paragraph, however, do suggest that some of the solutions with finite M2 are actually attained in
practice as the limit cycle to a wide class of initial disturbances.

Substitution of (8.2) into (3.22) leads to the identity

M8, = | [ k20 1. k(6) (k(0)-B) g (5.60)
where ¢ =0—wt. (8.60)
Thus, since k(0) - k(wt) = k*cos ¢, k(0)-i,x k(wt) = k?sin @, (8.7)

equation (3.21) reduces to

0 -1 B" -Y X-1 -9_ . B“ 02 B" 3
w[l 0] [BL]”T:A [X+1 Y ]az(sm%z [Bl])_a_zz[Bj =0, (884

where [Tawas -2 xaiv -3 "emqi) g (5.5

Similarly, it is evident that, with the substitution of (8.2) into (5.13a), A(k’, k) becomes a func-

tion of ¢’ — ¢ alone, say
A(k(0'), k(0)) = w*a(¢’— @), (8.9)

while the contribution to the Lorentz force is
m(t, k(0)) = 4m2M2% (B, cos ¢ + B, sin ¢)2. (8.10)

Hence the system of equations (7.1) reduces to the single equation

L2 e -9 Q) ap| Q-2ittsinzg-g) @ -0, (sita
where 2% (B, B,) +1% (B3 — B}) = e?it, (8.110)
and f;"Q(qs) sin 2(¢ — ¢,) dgp = 0. (8.11¢)

Note that ¢, does not provide an additional degree of freedom, but is instead a manifestation
of the arbitrary orientation of k(wt) to the direction of maximum @ (say).

Since a(¢) is in general a rather cumbersome function, attention is restricted, henceforth,
to the case @ = 0. The case may be justified formally in the limit /v — 0, since a(¢$) — 0 also.
It may be anticipated, however, that the qualitative features of the solution for non-zero a(¢) are
similar. This point of view is supported by the numerical results of § 7¢ for non-zero 4, and the
assumption isolates the interesting influence of the Lorentz force by suppressing other nonlinear
effects.

Integration of (8.11) yields the solution

Q(9) = [rlo(m*M?|w)]~* exp [(w2M?/w) cos 2(4 — ¢,)], (8.12)
where I, is the nth-order Bessel function of imaginary argument. Hence the coefficients X and
Y in (8.8) are defined by

X41Y = erive], (m2012/w) I, (n2M2|w) = e2io p(n2M2[w). (8.13)
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With the choice ¢, = 0, ¥ vanishes and X = x. The resulting eigenvalue problem (8.8) is con-
sidered for various values of 4 and p. The solution only has meaning as a kinematic dynamo
when (i)  is real, and the dynamical conditions are satisfied only when (ii) £ (B% — B?) = 0,
(iii) 2Z(B, B,) = 1 and wp is positive. Provided these conditions are met the equation

1,(8) = py(8), (8.14)

is solved to determine &(x). This, in turn, fixes the strength of the magnetic field as measured by
the magnetic energy

E = (wf2n%) E() f : (Bt + B?) dz. (8.15)

Consequently, even though the problem is nonlinear, the nonlinearity is confined to the con-
ditions (ii) and (iii) and the simple equation (8.14) which is solved after the dynamo is established !
Herein lies the success of the method, as the linear eigenvalue problem is readily solved numeri-
cally.

Asin § 7 only the smallest odd mode is considered. The Fourier representation

(B, B,) = Zo (Daps Dopiq) cos (2n+ 1) nz, (8.16)

is substituted into (8.8) and leads to the eigenvalue problem

5 M= (0172)3,0) D=0 (a3 0), (5,174
m=
where = Nom, am+1 = Moz, 2m = (2m+1)? (m > 0),

~ Now, om—2 = Nom, omse = A(pe+1) (2m+1) (m > 1),

Noma1, 2m—1 = = Nomar, omes = A(p—1) (2m+1)  (m > 1

)s
(8.17b)
_No,o = No,z = A(p+1),

N1,1 = ‘Nl,a = A(p—1),
Ny, = 0 otherwise.

Numerical calculations were performed with only the first ten harmonics so that after truncation
N, is a 20 x 20 matrix with non-zero elements restricted to five diagonals. For fixed y, all the
eigenvalues w/n? are pure imaginary when 4 = 0. As u is increased, the eigenvalues are grouped
in complex conjugate pairs, until one pair coalesce and subsequently split into two distinct real
eigenvalues. Moreover, a curve ¢ is located in the (4, ) plane (see figure 5a) for which all the
conditions (i), (ii) and (iii) hold and corresponds to the kinematic dynamo solution with the
larger of the two frequencies. The values of the frequency and magnetic energy of the hydro-
magnetic dynamo solution are plotted against / in figure 55.

The degenerate steady solution A4 = A, # = 0 marks the end of the curve ¢. It should be
noted that the eigenvalues of the kinematic problem are repeated at this point and are complex
in any neighbourhood (see § 3 and appendix B). The stability of the hydromagnetic solutions near
this point are readily treated, since M? is small, by the technique adopted in § 7a. It is supposed
that

A= Apy + M2A® (M2 < 1), (8.18a)

q(t, k) = 1/m+ M2 (8, k) + O(M). (8.185)
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As before ¢ is defined by (3.235) and a solution is sought of the form (7.13). The order 412 con-
tributed to ¢, corresponding to (7.14), is

q?(t, k(0)) = Re[(a*nfiv,) L (D?) e2iwt-0)], (8.19)
and hence ay; = 0y +M2(n?[2w,) Re {ia2 ZL(D?) [_1 1 11} e2iv t} + O (M*). (8.20)

The arguments leading to (7.15) are applied directly to (3.234) and lead to a similar equation
governing the amplitude a(7). The corresponding periodic solution X = X, (cf. (7.17)) is
represented by a point on the curve ¢ and the above analysis indicates that it is unstable.

1 3
0 T T ]
@
-0.5¢
P
-10
8 (o)
E
-2
wfr2
4
-1
1 E(@) (N=3)
1 E(t) (N=2)
01 2 A .":0

F1GURE 5 (a). Points on the curve ¢ in the A, u-plane correspond to solutions of the eigenvalue problem (8.8) for
which (i)  is real, (i) £ (B*~B?) = 0, (iii) 2%(B,B,) = 1 and wp > 0. (b) The frequency ® and the mag-
netic energy E for hydromagnetic dynamos corresponding to points on ¢ is given as a plot against A. The
lines A4 = 1.45, 1.79 < E < 1.85 and 4 = 1.55, 0.69 < E < 0.73 summarize the results for the case of
three and two rolls already illustrated in figures 4 and 2 respectively.
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There is, however, no reason to suppose that all solutions defined by points on ¢ are unstable.
For example, it may be postulated that solutions are stable after some point on the curve is
reached, say at the minimum value of 4, located approximately at the point

Apyp = 1.408, 5 =—0.58 (E = 1.8). (8.21)

Such a hypothesis is suggested by the existence of the stable hydromagnetic dynamos with finite
magnetic energy £(¢) considered in §§75, ¢. One final point; it is reasonable to speculate that no
hydromagnetic dynamos are possible with /A < A, ,,. If this is the case, there are clearly kine-
matic dynamos with even smaller 4 (e.g. 4 = A,). However, the value 4, is still substantially
less than A, obtained for kinematic dynamos based on steady motion.

9. CONCLUDING REMARKS

The analysis of the paper has established the existence of a hydromagnetic dynamo subject to
two important factors. First, the maintenance of a constant temperature difference across the
layer results in buoyancy forces that drive motions capable of sustaining a magnetic field.
The hydromagnetic dynamo is therefore, natural in the sense that an artificial force field is not
invoked to maintain suitable asymmetric motions. Secondly, some of the solutions are stable.
The stability of the hydromagnetic dynamo is clearly indicated by the numerical integration of
initial value problems in §§75, ¢, where the solutions rapidly approach limit cycles. Though
this result is only established numerically, comparison with the periodic solutions of § 8 suggests
that some (but not all) of the analytic solutions involving the continuous distribution of modes
are stable. Perhaps it should be pointed out that steady solutions could have been obtained
analytically based on the kinematic dynamo solution (3.26). These solutions were never investi-
gated on the grounds that they are unstable. Specifically, there is always part of the magnetic
field that grows exponentially when o/ is a zero of the Bessel function J,,.

Since the influence of the Lorentz force is to relax the constraining influence of rotation
(see, for example, Malkus 1959 and Eltayeb 1972), the role of the magnetic field in stabilizing the
hydromagnetic dynamo is curious. It would be expected that rather than stabilize the system an
increase in the magnetic field would in turn tend to increase the amplitude of the motion. This does
not happen for the models considered because the magnetic field is so weak. More precisely, the
general question concerning the intensification of the kinetic energy of the fluid does not arise, as
this is fixed by other considerations. Hence the Lorentz force provides only a selection mechanism:
any general tendency to amplify motions is balanced by buoyancy forces which result from a
modification to the mean vertical temperature as measured by @®(t). Consequently thermal
convection stabilizes the dynamical system?, as the results of §6 indicate. In brief, the gross fea-
tures of the finite amplitude dynamics are dominated by nonlinear convection of buoyancy and
it is only the fine structure which depends on the Lorentz force.

The arguments of the previous paragraph suggest that the hydromagnetic dynamos considered
in this paper are special. Indeed it is probably typical for the magnetic ficld to adjust in such a
way that Lorentz forces are comparable in magnitude with Coriolis forces. For, if this is the case,
the Taylor number required for motion to occur is smaller than 7% R0 (k) by orders of magnitude.
Evidently analysis of this problem along the lines of the present paper is a far more difficult
undertaking and is not attempted here. The present paper, therefore, does not claim to describe

t The notion of dynamic stability should not be confused with the stability of the dynamo.

60 Vol. 275. A.
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the typical convection driven dynamo in a rotating system but rather a special model which is
amenable to substantial analytic treatment.

The author wishes to thank Professor S. Childress for many useful discussions in the early stages
of this study and Professor P. H. Roberts for his continued interest and helpful comments on the
first draft of the paper. The author also wishes to thank Mr S. Kumar for valuable advice on
numerical procedures.

APPENDIX A

Referred to the cartesian axes adopted in this paper, Busse (1973) considers rolls whose axes are
alined to (say) the y-direction. Superimposed on the rolls is a shear flow, also in the y-direction,
whose magnitude depends only on the vertical coordinate z. Dynamically the two motions are
decoupled: neither motion influences the other. Since the flow is only a function of x and z
solutions of the magnetic induction equation can be sought of the form

b = b(x,z) exp{ot+ify}.

When £ is given, this leads to a linear eigenvalue problem for o. For a suitable choice of velo-
city and small f, Busse shows that

o =ifo+ @ +... (f<1),

where 0@ and o are real. Evidently dynamo action is possible when Re o® > 0. Since the
magnitude of the shear flow is given the condition Re o® = 0 for periodic magnetic fields fixes
the strength of the rolls so that the flow is determined completely. At the same time the magnetic
field is determined up to an arbitrary constant, as measured (say) by the mean magnetic energy.
Finally consideration of the equations of motion and heat conduction, taking account of non-
linear effects, determines a relation between the magnetic energy and Rayleigh number.

The expansion procedure hinges on the assumption that £ is small. Though small values of 8
may correspond to the most easily excited dynamos, the choice is arbitrary. Consequently only
a restricted class of solutions of the magnetic induction equation are considered. Indeed it
appears likely, if higher terms in the expansion of o are considered that the minimum value of #
for which dynamo action is possible is obtained as # — 0! The case # = 0 is ruled out, of course,
as part of the magnetic field in the limit § — 0 is uniform and the model is no longer a dynamo.
In the present paper, the second ad hoc length scale ~* L(> L) is replaced by the length scale
T-3L( < L) imposed naturally by the rapid rotation of the system. The distinction is important
as the success of the analytic techniques in both models stem from multiple length scale pro-
cedures.

The second major difference is in the choice of motion. Ignoring the shear velocity for the
moment, rolls with axes in any horizontal direction are possible at the onset of instability, and
moreover any superposition of these rolls is acceptable on the basis of linear theory. The amplitude
of each roll is arbitrary and, consequently, to lowest order there are N undetermined parameters,
where N is the number of independent rolls. When just one roll combined with a given shear
flow is considered, there is only one free parameter which, as already noted, transpires to be con-
stant for all time. In the present paper, where N( > 2) rolls are considered, the amplitude of each
roll varies on the diffusion time scale as a direct consequence of nonlinear interactions and the
Lorentz force. Moreover, since the response of the flow to time-dependent Lorentz forces is itself
periodic, magnetic fields are maintained for smaller values of the magnetic Reynolds number
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(and hence Rayleigh number) than predicted for steady flow. Thus in many cases the very
existence of the dynamo depends on the dynamic coupling of the Lorentz force. The situation
has some similarity with the phenomena of subcritical instability when finite amplitude motions
are possible for Rayleigh numbers smaller than their critical values.

TasLE 1. THE FOURIER COEFFICIENTS OF @(z) AND @4(2)

m Re 4, Im A4, Re 44 Im 44

0 1.0 0.0 1.0 0.0

1 1.275x 101 —6.260 x 101 —4.251 x 102 2.087 x 101
2 —2.128 x 107 —5.747x 1072 —4.257 x 102 —1.149x 102
3 —1.521 x 102 5.021 x 102 2.173 x 1073 —7.173 x 1073
4 9.099 x 103 2.936 x 103 1.011 x 1073 3.263 x 104
5 4.502 x 104 —1.340x 103 —4.093 x 10-5 1.218 x 104
6 —1.664x 101 — 5,746 x 108 —1.280x 108 —4.420x 106
7 —6.294 x 108 1.786 x 105 4.196 x 10-7 —1.191x 10—
8 1.689 x 10-¢ 6.044 x 107 9.935 x 108 3.556 x 108
9 5.170 x 108 —1.427x 1077 —2.721 x 10° 7.511x 10-?

AprPENDIX B
Any solution of the equation

2
O —iona & (psin2mz) ~nieg = 0, (B1)

subject to the boundary condition d¢/dz = 0 on z = 0 and 1 can be expressed in either the form

§‘, 4,,cos(2m+1)mz or % B,, cos 2mmz. (B2)
m=0 m=1
In order to obtain the eigenvalues 2 numerically, the series representations (B 2) were assumed
and the corresponding terms in (B1) were truncated at a finite number N (say). The problem
was thus reduced to determine numerically the eigenvalues and eigenvectors of a complex tri-
diagonal N x N matrix. The eigenvalues of the matrix were determined with N = 60. However,
the value of 5, obtained with N = 60 and N = 10 were identical to at least nine decimal places.
It was found that, when
A=Ay, = 1.5974, (B3)
the first six eigenvalues are —11.3936, —2.270, —7.584 —i0.2005, ~14.65, —23.68 —i0.0032,
— 34.69, where s, is complex for n odd, and real for n even.
The adjoint equation governing ¢4 is

2,54 A
%—}? +12nA sin 27-czgd?z— —n2s¢4d =0 (B4)

and the boundary conditions on ¢4 are that d¢4/dz = 0 on z = 0, 1. In order to evaluate the
integrals appearing in § 7« it is necessary to compute @ and ®4; the eigenfunctions corresponding

to

A=Ay, s =—1.3936i. (B5)

The coefficients of their Fourier series are listed in the table. Using these results it is easy to show
that
(D4, D*) =[0.7681 —10.03952] (P4, D), (B6)
60-2
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1 (A4 dd .
S (_a.z_, E) — [2.0979 +i0.4323] (04, ®), (B7)
P(@%) = [0.6172 —10.3232] — (3/=2) [0.04693 +i0.1864], (BS)
— 0.5937—i0.4163 (k = ko). (B9)
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